Search results for " 35J20"

showing 7 items of 7 documents

Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation

2020

We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson-Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approximation errors. The latter goal is achieved by means of the approach suggested in [S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69:481-500, 2000] for convex variational problems. Moreover, we establish the error identity, which defines the error measure natural for the considered class of problems and show that it yields computa…

a priori error estimatesClass (set theory)Correctness010103 numerical & computational mathematics01 natural sciencesMeasure (mathematics)guaranteed and efficient a posteriori error boundsFOS: MathematicsApplied mathematicsPolygon meshMathematics - Numerical Analysis0101 mathematicserror indicators and adaptive mesh refinementMathematicsNumerical AnalysisApplied MathematicsRegular polygonNumerical Analysis (math.NA)convergence of finite element approximationsLipschitz continuity010101 applied mathematicsComputational MathematicsNonlinear systemexistence and uniqueness of solutionssemilinear partial differential equations65J15 49M29 65N15 65N30 65N50 35J20MathematikA priori and a posterioriPoisson-Boltzmann equationdifferentiaaliyhtälöt
researchProduct

Elliptic equations involving the $1$-Laplacian and a subcritical source term

2017

In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.

Dirichlet problemApplied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)01 natural sciencesTerm (time)010101 applied mathematicsElliptic curveIdentity (mathematics)Operator (computer programming)Mathematics - Analysis of PDEsBounded functionFOS: MathematicsApplied mathematics0101 mathematicsLaplace operator35J75 35J20 35J92AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct

Nonlinear scalar field equations with general nonlinearity

2018

Consider the nonlinear scalar field equation \begin{equation} \label{a1} -\Delta{u}= f(u)\quad\text{in}~\mathbb{R}^N,\qquad u\in H^1(\mathbb{R}^N), \end{equation} where $N\geq3$ and $f$ satisfies the general Berestycki-Lions conditions. We are interested in the existence of positive ground states, of nonradial solutions and in the multiplicity of radial and nonradial solutions. Very recently Mederski [30] made a major advance in that direction through the development, in an abstract setting, of a new critical point theory for constrained functionals. In this paper we propose an alternative, more elementary approach, which permits to recover Mederski's results on the scalar field equation. T…

Pure mathematicsMathematics::Analysis of PDEsMonotonic function2010 MSC: 35J20 35J6001 natural sciencesMathematics - Analysis of PDEsFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mountain pass0101 mathematicsMathematicsgeographygeography.geographical_feature_category35J20 35J60Applied Mathematics010102 general mathematicsMultiplicity (mathematics)Monotonicity trickNonradial solutions010101 applied mathematicsNonlinear systemBerestycki-Lions nonlinearityBounded functionNonlinear scalar field equationsScalar fieldAnalysisAnalysis of PDEs (math.AP)
researchProduct

A minimization problem with free boundary and its application to inverse scattering problems

2023

We study a minimization problem with free boundary, resulting in hybrid quadrature domains for the Helmholtz equation, as well as some application to inverse scattering problem.

Mathematics - Analysis of PDEsFOS: MathematicsAnalysis of PDEs (math.AP)35J05 35J15 35J20 35R30 35R35
researchProduct

Quadrature domains for the Helmholtz equation with applications to non-scattering phenomena

2022

In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.

metaharmonic functionsmatematiikkapartial balayageyhtälötmean value theoremMathematics::Numerical Analysis35J05 35J15 35J20 35R30 35R35quadrature domainnon-scattering phenomenaMathematics - Analysis of PDEsFOS: MathematicsHelmholtz equationacoustic equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Calder\'on's problem for p-Laplace type equations

2016

We investigate a generalization of Calder\'on's problem of recovering the conductivity coefficient in a conductivity equation from boundary measurements. As a model equation we consider the p-conductivity equation with p strictly between one and infinity, which reduces to the standard conductivity equation when p equals two, and to the p-Laplace equation when the conductivity is constant. The thesis consists of results on the direct problem, boundary determination and detecting inclusions. We formulate the equation as a variational problem also when the conductivity may be zero or infinity in large sets. As a boundary determination result we recover the first order derivative of a smooth co…

Mathematics - Analysis of PDEs35R30 (Primary) 35J92 35R05 35D30 35Q60 35Q79 35J20 35J25 35H99 35A15 35A01 35A02 80A23 (Secondary)
researchProduct